让HuggingGPT帮你选择大模型!
? 随着ChatGPT的火爆以及MetaAI开源了LLaMA,各家公司好像一夜之间都有了各种ChatGPT模型的研发实力。而针对不同任务和应用构建的LLM更是层出不穷。那么,如何选择合适的模型完成特定的任务,甚至是使用多个模型完成一个复杂的任务似乎仍然很困难。为此,浙江大学与微软亚洲研究院联合发布了一个大模型写作系统HuggingGPT,可以根据输入的任务帮我们选择合适的大模型解决!
HuggingGPT利用ChatGPT读取HuggingFace上所有的模型接口,然后根据你的输入分解成不同任务交给不同的模型执行。这意味着你可以毫不费力的拥有完整的多模态能力,图片、文本、视频、语音甚至是3D任务等,都可以完全由文本输入后与各种模型交互产生最终结果,也就是可以做出任意的text-to-image-to-video-to-text-to-speech!绝对的好idea啊!一、当前LLMs的缺陷
尽管大模型取得了如此巨大的成功,但当前的LLM技术仍然存在缺陷,面临着建立AGI系统的一些紧迫挑战。受限于文本生成的输入和输出形式,当前LLMs缺乏处理复杂信息(如视觉和语音)的能力;
在实际应用场景中,一些复杂任务通常由多个子任务组成,因此需要多个模型的调度和协作,这也超出了语言模型的能力范围;
对于一些具有挑战性的任务,LLMs在零样本或少样本设置下表现出优异的结果,但它们仍然不如一些专家(如微调模型)强。
为了处理复杂的人工智能任务,LLMs应该能够与外部模型协调以利用它们的能力。因此,关键点在于如何选择合适的中间件来桥接LLMs和人工...
点击查看剩余70%
网友评论