预测股价一直是吸引投资者和研究人员的话题。投资者总是猜测股票的价格是否会上涨,因为有许多复杂的财务指标,只有投资者和具有良好财务知识的人才能理解,所以股市的走势对普通百姓来说非常难以琢磨。
对于非专家而言,机器学习是一个很好的机会,它可以准确地预测并获得稳定的财富,并且可以帮助专家获得最有用的指标并做出更好的预测。
本教程的目的是在TensorFlow 2和Keras中构建一个预测股市价格的神经网络。更具体地说,我们将使用LSTM单元构建循环神经网络,因为这是时间序列预测的最新技术。
一、安装环境
pip3 install tensorflow pandas numpy matplotlib yahoo_fin sklearn完成所有设置后,打开一个新的Python文件(或bfwstuio)并导入以下库:
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout, Bidirectional from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from yahoo_fin import stock_info as si from collections import deque import numpy as np import pandas as pd import matplotlib.pyplot as plt import time import os import random
# set seed, so we can get the same results after rerunning several times np.random.seed(314) tf.random.set_seed(314) random.seed(314)
二、准备数据集
def load_data(ticker, n_steps=50, scale=True, shuffle=True, lookup_step=1,
test_size=0.2, feature_columns=['adjclose', 'volume', 'open', 'high', 'low']):
"""
Loads data from Yahoo Finance source, as well as scaling, shuffling, normalizing and splitting.
Params:
ticker (str/pd.DataFrame): the ticker you want to load, examples include AAPL, TESL, etc.
n_steps (int): the historical sequence length (i.e window size) used to predict, default is 50
scale (bool): whether to scale prices from 0 to 1, default is True
shuffle (bool): whether to shuffle the data, default is True
lookup_step (int): the future lookup step to predict, default is 1 (e.g next day)
test_size (float): ratio for test data, default is 0.2 (20% testing data)
feature_columns (list): the list of features to use to feed into the model, default is everything grabbed from yahoo_fin
"""
# see if ticker is already a loaded stock from yahoo finance
if isinstance(ticker, str):
# load it from yahoo_fin library
df = si.get_data(ticker)
elif isinstance(ticker, pd.DataFrame):
# already loaded, use it directly
df = ticker
else:
raise TypeError("ticker can be either a str or a `pd.DataFrame` instances")
# this will contain all the elements we want to return from this function
result = {}
# we will also return the original dataframe itself
result['df'] = df.copy()
# make sure that the passed feature_columns exist in the dataframe
for col in feature_columns:
assert col in df.columns, f"'{col}' does not exist in the dataframe."
if scale:
column_scaler = {}
# scale the data (prices) from 0 to 1
for column in feature_columns:
scaler = preprocessing.MinMaxScaler()
df[column] = scaler.fit_transform(np.expand_dims(df[column].values, axis=1))
column_scaler[column] = scaler
# add the MinMaxScaler instances to the result returned
result["column_scaler"] = column_scaler
# add the target column (label) by shifting by `lookup_step`
df['future'] = df['adjclose'].shift(-lookup_step)
# last `lookup_step` columns contains NaN in future column
# get them before droping NaNs
last_sequence = np.array(df[feature_columns].tail(lookup_step))
# drop NaNs
df.dropna(inplace=True)
sequence_data = []
sequences = deque(maxlen=n_steps)
for entry, target in zip(df[feature_columns].values, df['future'].values):
sequences.append(entry)
if len(sequences) == n_steps:
sequence_data.append([np.array(sequences), target])
# get the last sequence by appending the last `n_step` sequence with `lookup_step` sequence
# for instance, if n_steps=50 and lookup_step=10, last_sequence should be of 60 (that is 50+10) length
# this last_sequence will be used to predict future stock prices not available in the dataset
last_sequence = list(sequences) + list(last_sequence)
last_sequence = np.array(last_sequence)
# add to result
result['last_sequence'] = last_sequence
# construct the X's and y's
X, y = [], []
for seq, target in sequence_data:
X.append(seq)
y.append(target)
# convert to numpy arrays
X = np.array(X)
y = np.array(y)
# reshape X to fit the neural network
X = X.reshape((X.shape[0], X.shape[2], X.shape[1]))
# split the dataset
result["X_train"], result["X_test"], result["y_train"], result["y_test"] = train_test_split(X, y,
test_size=test_size, shuffle=shuffle)
# return the result
return result
三、模型制作
点击查看剩余70%
网友评论0