语音性别识别是一种可以通过处理语音信号来确定说话者性别类别的技术,在本教程中,我们将尝试使用Python中的TensorFlow框架按语音对性别进行分类。
性别识别在许多领域都可能有用,包括自动语音识别,可以帮助提高这些系统的性能。它也可以用于按性别对呼叫进行分类,或者您可以将其作为功能添加到虚拟助手中,以区分通话者的性别。
一、准备数据集
特征提取始终是任何语音分析任务的第一阶段,基本上将任何长度的音频作为输入,并输出适合分类的固定长度向量。特征提取方法的一些例子是MFCC和Mel谱图。
我们将使用Mozilla的Common Voice Dataset(https://www.kaggle.com/mozillaorg/common-voice),它是用户在Common Voice网站上读取的语音数据集,其目的是实现对自动语音识别的培训和测试。但是,在查看了数据集后,实际上在流派列中标记了许多样本。因此,我们可以提取这些标记的样本并进行性别识别。
这是我为语音性别识别准备数据集的工作:
首先,我过滤了流派字段中标记的样本。
之后,我对数据集进行了平衡,以使女性样本的数量等于男性样本的数量,这将有助于神经网络不会针对特定性别过度拟合。
最后,我使用了梅尔频谱图提取技术从每个语音样本中获取了一个128长度矢量。
您可以在此存储库中(https://github.com/x4nth055/gender-recognition-by-voice)查看为本教程准备的数据集。
另外,如果您希望自己运行数据集,请运行以下(从文件.mp3到.npy文件)的脚本,如下:
import glob import os import pandas as pd import numpy as np import shutil import librosa from tqdm import tqdm def extract_feature(file_name, **kwargs): """ Extract feature from audio file `file_name` Features supported: - MFCC (mfcc) - Chroma (chroma) - MEL Spectrogram Frequency (mel) - Contrast (contrast) - Tonnetz (tonnetz) e.g: `features = extract_feature(path, mel=True, mfcc=True)` """ mfcc = kwargs.get("mfcc") chroma = kwargs.get("chroma") mel = kwargs.get("mel") contrast = kwargs.get("contrast") tonnetz = kwargs.get("tonnetz") X, sample_rate = librosa.core.load(file_name) if chroma or contrast: stft = np.abs(librosa.stft(X)) result = np.array([]) if mfcc: mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T, axis=0) result = np.hstack((result, mfccs)) if chroma: chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0) result = np.hstack((result, chroma)) if mel: mel = np.mean(librosa.feature.melspectrogram(X, sr=sample_rate).T,axis=0) result = np.hstack((result, mel)) if contrast: contrast = np.mean(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T,axis=0) result = np.hstack((result, contrast)) if tonnetz: tonnetz = np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(X), sr=sample_rate).T,axis=0) result = np.hstack((result, tonnetz)) return result dirname = "data" if not os.path.isdir(dirname): os.mkdir(dirname) csv_files = glob.glob("*.csv") for j, csv_file in enumerate(csv_files): print("[+] Preprocessing", csv_file) df = pd.read_csv(csv_file) # only take filename and gender columns new_df = df[["filename", "gender"]] print("Previously:", len(new_df), "rows") # take only male & female genders (i.e droping NaNs & 'other' gender) new_df = new_df[np.logical_or(new_df['gender'] == 'female', new_df['gender'] == 'male')] print("Now:", len(new_df), "rows") new_csv_file = os.path.join(dirname, csv_file) # save new preprocessed CSV new_df.to_csv(new_csv_file, index=False) # get the folder name folder_name, _ = csv_file.split(".") audio_files = glob.glob(f"{folder_name}/{folder_name}/*") all_audio_filenames = set(new_df["filename"]) for i, audio_file in tqdm(list(enumerate(audio_files)), f"Extracting features of {folder_name}"): splited = os.path.split(audio_file) # audio_filename = os.path.join(os.path.split(splited[0])[-1], splited[-1]) audio_filename = f"{os.path.split(splited[0])[-1]}/{splited[-1]}" # print("audio_filename:", audio_filename) if audio_filename in all_audio_filenames: # print("Copyying", audio_filename, "...") src_path = f"{folder_name}/{audio_filename}" target_path = f"{dirname}/{audio_filename}" #create that folder if it doesn't exist if not os.path.isdir(os.path.dirname(target_path)): os.mkdir(os.path.dirname(target_path)) features = extract_feature(src_path, mel=True) target_filename = target_path.split(".")[0] np.save(target_filename, features) # shutil.copyfile(src_path, target_path)
首先,请使用pip安装以下库:
pip3 install numpy pandas tqdm sklearn tensorflow pyaudio librosa接下来,打开一个新的笔记本或bfwstudio并导入我们需要的模块:
import pandas as pd import numpy as np import os import tqdm from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM, Dropout from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping from sklearn.model_selection import train_test_split现在要获取每个样本的性别,有一个CSV元数据文件(在此处检查),可将每个音频样本的文件路径链接到其适当的性别:
df = pd.read_csv("balanced-all.csv") df.head()看起来是这样的:
filename gender
0 data/cv-other-train/sample-069205.npy female
1 data/cv-valid-train/sample-063134.npy female
2 data/cv-other-train/sample-080873.npy female
3 data/cv-other-train/sample-105595.npy female
4 data/cv-valid-train/sample-144613.npy female
df.tail()输出:
filename gender
66933 data/cv-valid-train/sample-171098.npy male
66934 data/cv-other-train/sample-022864.npy male
66935 data/cv-valid-train/sample-080933.npy male
66936 data/cv-other-train/sample-012026.npy male
66937 data/cv-other-train/sample-013841.npy male
# get total samples n_samples = len(df) # get total male samples n_male_samples = len(df[df['gender'] == 'male']) # get total female samples n_female_samples = len(df[df['gender'] == 'female']) print("Total samples:", n_samples) print("Total male samples:", n_male_samples) print("Total female samples:", n_female_samples)输出:
Total samples: 66938
Total male samples: 33469
Total female samples: 33469
def load_data(vector_length=128): """A function to load gender recognition dataset from `data` folder After the second run, this will load from results/features.npy and results/labels.npy files as it is much faster!""" # make sure results folder exists if not os.path.isdir("results"): os.mkdir("resul...
点击查看剩余70%
网友评论0